Coming up for air

Within a few hours of the naval sonar drill, reports arrived of stranded beaked whales appearing over many kilometres along the coast.  These animals showed signs of decompression sickness, also known as ‘the bends’.

Post-mortems on these animals revealed gas and fat bubbles in their bones and tissues.


The deeper you dive, the more the pressure forces nitrogen and oxygen from your lungs to dissolve into your body tissues.  If you then surface too quickly, these gases can come out of solution and form bubbles in your blood.  These can block smaller blood capillaries, cutting off the oxygen supply to the affected tissues.  Decompression sickness is a recurrent risk amongst scuba-divers who breathe compressed air, and breath-holding ‘free-divers’ who make too many consecutive dives.

We have a diving reflex like other mammals.  As the water hits our face, our heart slows and muscles under the skin contract, shunting blood into the centre of our body.  Water pressure increases by 1 Atmosphere for every 10m depth.  At 2 Atmospheres, the air in our lungs is half its original volume.  By 50 metres (5 Atmospheres), gaseous oxygen and nitrogen dissolves into our body tissues, and fluid floods into our lungs.  The human free-diving depth record is 214 metres (Image: Wikimedia Commons)

We have a diving reflex like other mammals. As the water hits our face, our heart slows and muscles under the skin contract, shunting blood into the centre of our body. Water pressure increases by 1 Atmosphere for every... more 10m depth. At 2 Atmospheres, the air in our lungs is half its original volume. By 50 metres (5 Atmospheres), gaseous oxygen and nitrogen dissolves into our body tissues, and fluid floods into our lungs. The human free-diving depth record is 214 metres (Image: Wikimedia Commons)

In contrast, beaked whales routinely hunt for an hour below 1000m, using echolocation.  These ‘extreme divers’ do not normally experience decompression sickness, although fossils from early in their evolutionary history show that they were not immune to these problems.  X-rays of the fossilised bones of more primitive whales show regions where bubbles formed inside a capillary, damaging the bone tissue and leaving a tell-tale signature.

Whale embryos initially develop rear limb buds, like land mammals.  These structures are reabsorbed back into the body later in development. The fossil record, along with DNA studies, reveal that whales’ closest living relatives are cows and hippos, which share their same four-legged (tetrapod), hoofed, land-dwelling ancestors.

Dolphin embryo (Image: Wikimedia Commons)

The hind limbs of this Spotted Dolphin embryo (Stenella frontalis) are visible as small bumps (limb buds) near the base of the tail.  (Image: Wikimedia Commons)

This raises some puzzling questions:

– Why did whales’ ancestors take to the water after 300 million years on land?

– Why didn’t they re-evolve gills?

– How can they dive for so long without getting ‘the bends’?

Why did whales’ air breathing ancestors take to the water?

These North Ronaldsay sheep are descended from an Orkney population farmed here since Neolithic times.  They graze along the shoreline, feeding almost exclusively on seaweed.  Their rumen stomachs have an adapted bacterial population which enables them to digest marine algae (Image: Wikimedia Commons)

These North Ronaldsay sheep are descended from an Orkney population farmed here since Neolithic times. They graze along the shoreline, feeding almost exclusively on seaweed. Their rumen stomachs have an adapted bacteria... morel population which enables them to digest marine algae (Image: Wikimedia Commons)

The land-dwelling ancestors of whales may have first waded into the sea to escape from predators on land.  Shallow coastal areas offered a relatively safe haven with little competition for the new food resources available in or near the water.  This initial stage would have enabled these semi-aquatic ancestors of modern whales to adapt their digestive systems to a marine food source.

Fossils from the early Eocene (52Ma) show a succession of increasingly aquatic forms.  From crocodile-like and otter -like amphibious hunters, developmental changes remodelled their breathing, senses, kidney function and limbs to survive better in water.  By 40Ma, these early whales had flippers, a fluked tail, and could mate, birth and suckle their young without leaving the water.

At the Eocene-Oligocene boundary (around 36Ma), movement of the continental plates opened up the deep waters of the circum-Antarctic ocean.  This offered new ecological roles for the deeper-diving whales.  Many new whale species appeared, including ancestors of the filter-feeding baleen whales and toothed whales that hunt in deep waters using echolocation.

Why didn’t whales re-evolve gills?

A sperm whale (Physeter macrocephalus) begins a dive; Gulf of Mexico.  Adaptations for cold, deep waters include insulating blubber, lungs designed to collapse under pressure, and locomotion.  The fluked tail is a super-efficient ‘caudal oscillator’; both the up and down strokes generate lift, like a birds’ wing.  These and other whale and seal species dive deep both to forage and to escape from killer whale (Orcinus orca) attacks (Image: Wikimedia Commons)

A sperm whale (Physeter macrocephalus) begins a dive; Gulf of Mexico. Adaptations for cold, deep waters include insulating blubber, lungs designed to collapse under pressure, and locomotion. The fluked tail is a super-e... morefficient ‘caudal oscillator’; both the up and down strokes generate lift, like a birds’ wing. These and other whale and seal species dive deep both to forage and to escape from killer whale (Orcinus orca) attacks (Image: Wikimedia Commons)

The ability to breathe underwater like fish seems at first like a requirement for life in the sea.  However despite their lack of gills, whales and dolphins are highly effective predators in both shallow and deep water.

Modern whales’ warm bodies enable their fast reflexes for hunting.  Whilst swordfish and tuna have some warm muscles, most of their tissues are at sea water temperature.  Were their whole bodies warm, the heat loss from their gills would be energetically too costly.

Fish gills develop from the ‘branchial arches’; bulging structures in the early vertebrate embryo.  These same tissue bulges give rise to the lower jaw, the middle ear, hyoid bone and larynx in the throat of humans and other mammals.  For whales and other mammals to form gills would require that they develop new embryonic structures; this would render redundant the lungs with their vast area of vascular tissue.

Breathing air enables whales to use vocal signals to coordinate their social groups and attract mates.  Like land mammals, the baleen whales make vocal calls by passing a controlled air flow through the larynx.  Echolocation, the alternative means of producing sound used by dolphins and other toothed whales, also requires air.  Their ‘sonic lips’ generate calls in an air-filled nasal passage.  Whilst many fish make sounds, their vocal abilities are simple and limited.

How do they dive for so long without getting ‘the bends’?

This diagram shows how myoglobin forms ‘alpha-helical’ spirals around a ‘haem’ co-factor.  Haem’s ring-structure holds an iron atom, carrying an electrostatic charge.  This attracts and holds an oxygen molecule (red spheres).  As carbon dioxide builds up it dissolves to form carbonic acid.  This change of pH, alters the electrostatic balance, prompting myoglobin to release its oxygen.  The myoglobin protein’s high positive charge also steadies the pH when cells break down sugars without oxygen and produce lactic acid (Image: Wikimedia Commons)

This diagram shows how myoglobin forms ‘alpha-helical’ spirals around a ‘haem’ co-factor. Haem’s ring-structure holds an iron atom, carrying an electrostatic charge. This attracts and holds an oxygen molecule ... more(red spheres). As carbon dioxide builds up it dissolves to form carbonic acid. This change of pH, alters the electrostatic balance, prompting myoglobin to release its oxygen. The myoglobin protein’s high positive charge also steadies the pH when cells break down sugars without oxygen and produce lactic acid (Image: Wikimedia Commons)

All mammals store oxygen in their muscles using a protein called myoglobin.  Sustained activity during long foraging dives requires a lot of oxygen.  Deep divers have much higher muscle myoglobin concentrations than land mammals, giving them substantial oxygen reserves.

Modern diving mammals, and deep diving fish such as tuna, have also modified their myoglobin.  As early whales began to explore the deeper waters, selection resulted in better survival from individuals whose myoglobin carried a stronger positive electrostatic charge.   Like positive magnetic poles, these ‘supercharged’ molecules repel each other.  This keeps them in solution, allowing them to function at high tissue concentrations where most other proteins would clump together.

A supercharged form and high concentration of myoglobin makes it possible for deep diving mammals to return to the surface slowly after a prolonged dive.  This behaviour avoids decompression sickness.

However when beaked whales and other species encounter naval sonar at depth, this causes them to ‘panic’ and surface too quickly, inducing ‘the bends’.

Text copyright © 2015 Mags Leighton. All rights reserved.

References
Balasse M et al. (2006) ‘Stable isotope evidence (δ13C, δ18O) for winter feeding on seaweed by Neolithic sheep of Scotland’ Journal of Zoology 270(1); 170-176
Beatty B L & Rothschild B M (2008)  ‘Decompression syndrome and the evolution of deep diving physiology in the Cetacea’  Naturwissenchaft 95;793-801
Costa D P (2007) Diving physiology of marine vertebrates’ Encyclopedia of life sciences doi:10.1002/9780470015902.a0004230
Ferguson S H et al. (2012) ‘Prey items and predation behavior of killer whales (Orcinus orca) in Nunavut, Canada based on Inuit hunter interviews’  Aquatic Biosystems 8 (3); http://www.aquaticbiosystems.org/content/8/1/3
Gatesy J et al. (2013) ‘A phylogenetic blueprint for a modern whale’  Molecular Phylogenetics and Evolution’ 66:479-506
Mirceta S et al. (2013) ‘Evolution of mammalian diving capacity traced by myoglobin net surface charge’  Science 340;1234192
Nery M F et al. (2013) ‘Accelerated evolutionary rate of the myoglobin gene in long-diving whales’  Journal of Molecular Evolution 76;380-387
Noren S R et al. (2012) ‘Changes in partial pressures of respiratory gases during submerged voluntary breath hold across odontocetes; is body mass important?’  Journal of Comparative Physiology B 182;299-309
Orpin C G et al. (1985) ‘The rumen microbiology of seaweed digestion in Orkney sheep’  Journal of Microbiology 58(6); 585-596
Rothschild B M et al (2012) ‘Adaptations for marine habitat and the effect of Jurassic and Triassic predator pressure on development of decompression syndrome in ichthyosaurs’  Naturwissenchaften 99;443-448
Steeman M E et al. (2009) ‘Radiation of extant cetaceans driven by restructuring the oceans’  systematic biology 58;573-585
Thewissen J G M et al (2007) ‘Whales originated from aquatic artiodactyls in the eocene epoch of India’  Nature 450;1190-1195
Thewissen J G M et al (2006) ‘Developmental basis for hind-limb loss in dolphins and origin of the cetacean body plan’ Proceedings of the National Academy of Sciences USA 103(22); 8414–8418
Thewissen J G M and Sunil B (2001) ‘Whale origins as a poster child for macroevolution’  Bioscience 51(12);1037-1049
Tyack P L (2006) ‘Extreme diving of beaked whales’  Journal of Experimental Biology 209;4238-4253 Naturwissenchaften 99:443-448
Uhen M D (2010) ‘The origin(s) of whales’  Annual Review of Earth and Planetary Sciences 38;189-219
Uhen M D (2007) ‘Evolution of marine mammals; back to the sea after 300 million years’  The Anatomical Record 290;514-522
Williams T M (1999) ‘The evolution of cost efficient swimming in marine mammals; limits to energetic potimization’  Philosohical Transactions of the Royal Society of London series B  354;193-201

Riddles in code; is there a gene for language?

‘I have…’

Words are like genes; on their own they are not very powerful.  But apply them with others in the right phrase, at the right time and with the right emphasis, and they can change everything.

‘I have a dream…’

Genes are coded information.  They are like the words of a language, and can be combined into a story which tells us who we are.

The stories we choose to tell are powerful; they can change who we become, and also change the people with whom we share them.

‘I have a dream today!’


Language is a means for coding and passing on information, but it is cultural, and definitely non-genetic.  Nevertheless, for our speech capacity to have evolved, our ancestors must have had a body equipped to make speech sounds, along with the mental capacity to generate and process this language ‘behaviour’.  Our body’s development is orchestrated through the actions of relevant genes.  If the physical aspects of language ultimately have a genetic basis, this implies that speech must derive, at least in part, from the actions of our genes.

The hunt for genes involved with language led researchers at the University of Oxford to investigate an extended family (known as family KE).  Some family members had problems with their speech.  The pattern of their symptoms suggested that they inherited these difficulties as a ‘dominant’ character, and through a single gene locus.

The FoxP2 gene encodes for the ‘Forkhead-Box Protein-2’; a transcription factor.  This is a type of protein that interacts with DNA (shown here as a pair of brown spiral ladders), and influences which genes are turned on in the cell, and which remain silent.   This diagram shows two Forkhead box proteins, which associate with each other when active.  This bends the DNA strand and makes critical areas of the genetic code more accessible (Image: Wikimedia Commons)

The FOXP2 gene encodes for the ‘Forkhead-Box Protein-2’; a transcription factor. This is a type of protein that interacts with DNA (shown here as a pair of brown spiral ladders), and influences which genes are turne... mored on in the cell, and which remain silent. This diagram shows two Forkhead box proteins, which associate with each other when active. This bends the DNA strand and makes critical areas of the genetic code more accessible (Image: Wikimedia Commons)

Discovery of another unrelated patient with the same symptoms confirmed that the condition was linked to a gene known as FOXP2  (short for ‘Forkhead Box Protein-2’).  This locus encodes a ‘transcription factor’; a protein that influences the activation of many other genes.  FOXP2 was subsequently dubbed ‘the gene for language’.  Is that correct?

Not really.  FOXP2 affects a range of processes, not just speech.  The mutation which inactivates the gene causes difficulties in controlling muscles of the face and tongue, problems with compiling words into sentences, and a reduced understanding of language.  Neuroimaging studies showed that these patients have reduced nerve activity in the basal ganglia  region of the brain.  Their symptoms are similar to some of the problems seen in patients with debilitating diseases such as Parkinson’s and Broca’s Aphasia; these conditions also show impairment of the basal ganglia.

Genes code for proteins by using a 3-letter alphabet of adenine, thymine, guanine and cytosine (abbreviated to A, T, G and C).  These nucletodes are knwn as ‘bases’ (are alkaline in solution) and make matched pairs which form the ‘rungs of the ladder’ of the DNA helix. Substituting one base for another (as happens in many mutations) can change the amino acid sequence of the protein a gene encodes.  Changes may make no impact on survival, allowing the DNA sequence to alter over time.  Changes that affect critical sections of the protein (e.g. an enzyme’s active site), or critical proteins like FoxP2, are rare (Image: Wikimedia Commons)

Genes code for proteins by using a 3-letter alphabet of adenine, thymine, guanine and cytosine (abbreviated to A, T, G and C). These nucletodes are knwn as ‘bases’ (are alkaline in solution) and make matched pairs w... morehich form the ‘rungs of the ladder’ of the DNA helix. Substituting one base for another (as happens in many mutations) can change the amino acid sequence of the protein a gene encodes. Changes may make no impact on survival, allowing the DNA sequence to alter over time. Changes that affect critical sections of the protein (e.g. an enzyme’s active site), or critical proteins like FOXP2, are rare (Image: Wikimedia Commons)

Genes provide the code to build proteins.  Proteins are assembled from this coding template (the famous triplets) as a sequence of amino acids, strung together initially like the carriages of a train and then folded into their finished form.  The amino acid sequences of the FOXP2 protein show very few differences across all vertebrate groups.  This strong conservation of sequence suggests that this protein fulfils critical roles for these organisms.  In mice, chimpanzees and birds, FOXP2 has been shown to be required for the healthy development of the brain and lungs.  Reduced levels of the protein affect motor skills learning in mice and vocal imitation in song birds.

The human and chimpanzee forms of FOXP2 protein differ by only two amino acids. We also share one of these changes with bats.  Not only that, but there is only one amino acid difference between FOXP2 from chimpanzees and mice.  These differences might look trivial but they are probably significant.  FOXP2 has evolved faster in bats than any other mammal, hinting at a possible role for this protein in echolocation.

Mouse brain slice, showing neurons from the somatosensory cortex (20X magnification) producing green fluorescent protein (GFP).  Projections (dendrites) extend upwards towards the pial surface from the teardrop-shaped cell bodies. Humanised Foxp2 in mice causes longer dendrites to form on specific brain nerve cells, lengthens the recovery time needed by some neurons after firing, and increases the readiness of these neurons to make new connections with other nerves (synaptic plasticity).  The degree of synaptic plasticity indicates how efficiently neurons code and process information (Image: Wikimedia Commons)

Mouse brain slice, showing neurons from the somatosensory cortex (20X magnification) producing green fluorescent protein (GFP). Projections (dendrites) extend upwards towards the pial surface from the teardrop-shaped ce... morell bodies. Humanised Foxp2 in mice causes longer dendrites to form on specific brain nerve cells, lengthens the recovery time needed by some neurons after firing, and increases the readiness of these neurons to make new connections with other nerves (synaptic plasticity). The degree of synaptic plasticity indicates how efficiently neurons code and process information (Image: Wikimedia Commons)

Changing the form of mouse FOXP2 to include these two human-associated amino acids alters the pitch of these animals’ ultrasonic calls, and affects their degree of inquisitive behaviour.  Differences also appear in their neural anatomy.  Altering the number of working copies (the genetic ‘dose’) of FOXP2 in mice and birds affects the development of their basal ganglia.

Mice with ‘humanised’ FOXP2 protein show changes in their cortico-basal ganglia circuits along with altered exploratory behaviour and reduced levels of dopamine (a neurotransmitter  that affects our emotional responses).  So too, human patients with damage to the basal ganglia show reduced levels of initiative and motivation for tasks.

This suggests that FOXP2 is part of a general mechanism that affects our thinking, particularly around our initiative and mental flexibility.  These are critical components of human creativity, and are as it happens, essential for our speech.

Basal ganglia circuits process and organise signals from other parts of the brain into sequences.  Speaking involves coordinating a complex sequence of muscle actions in the mouth and throat, and synchronising these with the out-breath.  We use these same muscles and anatomical structures to breathe, chew and swallow;  our ability to coordinate them affects our speech, although this is not their primary role.

Family KE’s condition, caused by a dominant mutation in the FoxP2 gene, follows an autosomal (not sex-linked) pattern of inheritance, as shown here.   Dominant mutations are visible when only one gene copy is present.  In contrast a recessive trait is not seen in the organism unless both chromosomes of the pair carry the mutant form of the gene.   The FoxP2 transcription factor protein is required in precise amounts for normal function of the brain.  The loss of one working FoxP2 gene copy reduces this ‘dose’ which is enough to cause the problems that emerged as family KE’s symptoms (Image: Annotated from Wikimedia Commons)

Family KE’s condition, caused by a dominant mutation in the FOXP2 gene, follows an autosomal (not sex-linked) pattern of inheritance, as shown here.Dominant mutations are visible when only one gene copy is present. In... more contrast a recessive trait is not seen in the organism unless both chromosomes of the pair carry the mutant form of the gene. The FOXP2 transcription factor protein is required in precise amounts for normal function of the brain. The loss of one working FOXP2 gene copy reduces this ‘dose’ which is enough to cause the problems that emerged as family KE’s symptoms (Image: Annotated from Wikimedia Commons)

In practice, very few of our 25,000 genes are individually responsible for noticeable characteristics.  Most genetically inherited diseases result from the effects of multiple gene loci.  FOXP2 is unusual because of its ‘dominant’ genetic character.  It does not give us our language abilities, but it is involved in the neural basis of our mental flexibility and agility at controlling the muscles of our mouths, throats and fingers.

In addition, genes are only part of the story of our development.  The way we think and subsequently behave alters our emotional state.  Feeling stressed or calm affects which circuits are active in our brain.  This alters the biochemical state of body organs and tissues, particularly of the immune system, modifying which genes they are using.

The dance between the code stored in our genes and the consequences of our thoughts builds us into what we are mentally, physically and socially.  This story is ours to tell.  By our experience, and with this genetic vocabulary, we create what we become.

Text copyright © 2015 Mags Leighton. All rights reserved.

References
Chial H (2008)  ‘Rare genetic disorders: Learning about genetic disease through gene mapping, SNPs, and microarray data’ Nature Education 1(1):192  http://www.nature.com/scitable/topicpage/rare-genetic-disorders-learning-about-genetic-disease-979
Clovis YM et al. (2012) ‘Convergent repression of Foxp2 3′UTR by miR-9 and miR-132 in embryonic mouse neocortex: implications for radial migration of neurons’  Development 139, 3332-3342.
Enard, W (2011) ‘FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution’  Current Opinion in Neurobiology  21; 415–424
Enard, W et al (2009)  A Humanized Version of Foxp2 Affects Cortico-Basal Ganglia Circuits in Mice  Cell 137 (5); 961–971  http://www.sciencedirect.com/science/article/pii/S009286740900378X
Feuk L et at., Absence of a Paternally Inherited FOXP2 Gene in Developmental Verbal Dyspraxia, in The American Journal of Human Genetics, Vol. 79 November 2006, p.965-72.
Fisher SE and Scharff C (2009) ‘FOXP2 as a molecular window into speech and language’  Trends in Genetics 25 (4); 166-177
Lieberman P  (2009)  ‘FOXP2 and Human Cognition’  Cell 137; 800-803
Marcus GF & Fisher SE (2003) ‘FOXp2 in focus; what can genes tell us about speech and language?’  Trends in Cognitive Sciences 7(6); 257-262
Reimers-Kipping S et al. (2011) ‘Humanised Foxp2 specifically affects cortico-basal ganglia circuits’ Neuroscience 175; 75-84
Scharff C & Haesler S (2005) ‘An evolutionary perspective on Foxp2; strictly for the birds?’ Current opinion in Neurobiology 15:694-703
Vargha-Khadem F et al. (2005) ‘FOXP2 and the neuroanatomy of speech and language’  Nature Reviews Neuroscience 6, 131-138 http://www.nature.com/nrn/journal/v6/n2/full/nrn1605.html
Wapshott N (2013)  ‘Martin Luther King's 'I Have A Dream' Speech Changed The World’ Huffington post, 28th August 2013  http://www.huffingtonpost.com/2013/08/28/i-have-a-dream-speech-world_n_3830409.html
Webb DM & Zhang J (2005) ‘Foxp2 in song learning birds and vocal learning mammals’  Journal of Heredity 96(3);212-216